Learning Leads To Ruling

Page 1 of 36

11th 12th Science Notes Questions

[Tnpsc Syllabus Portion]

Cell Biology & Genetics

1. Chromosomes

I. 1.									
	(a) Bridges	(b) Waldeyer	(c) Balbiani	(d) Flemming					
	Explanation								
	The term was coined be which was itself introduced	•	·	rtz, referring to the term chromatin, d cell division.					
2.	The unit of heredity are	The unit of heredity are							
	(a) Chromosomes	(b) Genes	(c) Traits	(d) Centromeres					
Explanation									
Chromosomes form the physical basis of heredity. Genes, the chemical basis of heredity, are a in linear fashion on the chromosomes.									
3.	Genes are made up of								
	(a) Aminoacids an	sterol	(b) Sterol and Ster	roids					
	(c) DNA and associ	riated proteins	(d) Bases and sug	ars					
	Explanation								
	The genes travel from and protein, the DNA p		• •	and since gene is composed of DNA ity.					
4.	Pick out the odd one	<u> </u>							
	(a) Polytene	(b) Lampbrush	(c) Autosome	(d) Ophioglossum					
	Explanation								
Some common examples of ferns are Nephrolepis, Ophioglossum , Osmunda, Pteris, Adiantum Marsilea, Azolla, Salvinia etc.									
5.	Polytene chromosomes	were observed by							
	(a) Bridges	(b) Waldeyer	(c) C.G. Balbiani	i (d) Flemming					
	Explanation								

	Polytene chromosomes were originally observed in the larval salivary glands of Chironomus midges by Édouard-Gérard Balbiani in 1881.							
6.	Kinetochore play	ys an important role in						
	(a) Mitosis	(b) Meiosis	(c) N	litosis and me	iosis	(d) Amitosis		
	Explanation	1						
	Kinetochore	plays an important role	in Mitosis an	d meiosis				
7.	Chromatin is a _							
	(a) Fluid	(b) Granular form	(c) Jelly	(d) Viscous	, gelatin	ous substance		
	Explanation							
	Chromatin is a V	iscous, gelatinous subs	stance, Chromo	osomes appear	as chron	natin network.		
8.	Genes are arrang	ed in ash	ape.					
	(a) Linear	(b) Elliptical	(c) O	rbitatory	(d) St	traight line		
	Explanation	1						
	Genes are arranged on the chromosomes in a linear order like beads on a string. A single gene may have more than one functional state or form. These functional states are referred to as alleles							
9.	The repeating un	its of chromatin is						
	(a) Gene	(b) Nucleoso	me	(c) Ribosom	ne	(d) Polysome		
	Explanation							
	The basic repeat eight histone pro		actional) unit	of chromatin i	is the nu	cleosome, which contain	S	
10.	Centromere is the	e						
	(a) Primary	constriction	(b) A	rms of the chro	omosom	e		
	(c) Secondary	y constriction	(d) U	nits of chromo	some			
	Explanation							
	A lighter staining region appears as a constriction or thinner segment of the chromosome and is usually called centromere or primary constriction or kinetochore.							
11.	Metacentric chro	mosomes are						
	(a) Rod shape	ed (b) L-shaped	(c) V	-shaped	(d) B	all shaped		
Le	arning Leads To F	Ruling				Page 2 of 36)	

As the chromosomes move toward oppos	te poles they	y assume	V or	J or]	I shaped	configuration	and
metacentric chromosomes are V-shaped							

12. The number of autosomal chromosomes in human diploid cell is _____ chromosomes.

- (a) 44
- (b) 46
- (c) 36
- (d) 48

Explanation

Humans have 46 chromosomes in each diploid cell. Among those, there are two sexdetermining chromosomes, and 22 pairs of autosomal, or non-sex, chromosomes.

- 13. Giant chromosomes are _____ chromosomes.
 - (a) Polytene and sat

(b) Lampbrush and sat

(c)Polytene and lampbrush

(d) 'Sat' and Balbiani

Explanation

There are two types of giant chromosomes – polytene chromosome and lamp brush chromosome.

- 14. Lampbrush chromosomes were first observed by _____
 - (a) Waldeyer
- (b) Balbiani
- (c) Flemming
- (d) Bridges

Explanation

Lamp brush chromosomes were first observed by Flemming in 1882. It looked like brushes. They occur at the diplotene stage of meiotic prophase in oocytes of an animal Salamandor and in giant nucleus of the unicellular alga Acetabularia.

15. C.G. Balbiani in 1881 observed polytene chromosomes in _____

- (a) Salivary glands of drosophila
- (b) Eukaryotic organisms
- (c) Prokaryotic organisms
- (d) All living organisms

Explanation

Polytene chromosomes were observed by C.G. Balbiani in 1881 in the salivary glands of Drosophila. The characteristic feature of polytene chromosome is that along the length of the chromosome there is a series of dark bands alternate with clear zones called inter bands.

16. Balbiani ring is also called _____

- (a) Lampbrush chromosome
- (b) B-chromosome

	(c) Chromosomal puff (d) Balbiani band								
	Explanation								
	The polytene chromosome has extremely large puff called Balbiani ring. It is also known as chromosomal puff. As this chromosome occurs in the salivary gland it is known as salivary gland chromosomes.								
17.	Lampbrush chromosomes occur at the stage of meiotic prophase in oocyte of all animal species.								
	(a) Pachytene (b) Diplotene (c) Leptotene (d) Diakineis								
	Explanation								
	Lamp brush chromosomes were first observed by Flemming in 1882. It looked like brushes. They occur at the diplotene stage of meiotic prophase in oocytes of an animal Salamandor and in giant nucleus of the unicellular alga Acetabularia.								
18.	The lampbrush chromosomes found in the giant nucleus of unicellular algae								
	(a) Chlamydomonas (b) Volvox (c) Acetabularia (d) Eudorina								
	Explanation								
	Lamp brush chromosomes were first observed by Flemming in 1882. It looked like brushes. They occur at the diplotene stage of meiotic prophase in oocytes of an animal Salamandor and in giant nucleus of the unicellular alga Acetabularia.								
19.	The basis proteins found in chromatin are								
	(a) Albumin and globulin (b) Flavo protein and kinetochore								
	(c) Histones and non-histone proteins								
	Explanation								
	Chromatin is a viscous gelatinous substance that contains DNA, RNA, histone and non-histone proteins. H1, H2A, H2B, H3 and H4 are the five types of histones found in the chromatin.								
20.	Telomere is seen in part of chromosome.								
	(a) Apical (b) Terminal (c) Middle (d) Axial								
	Explanation								
	Telomere is the terminal part of chromosome. It offers stability to the chromosome. DNA of the telomere has specific sequence of nucleotides.								
	The stability of the terminal part of chromosome is maintained by rning Leads To Ruling Page 4 of 36								

General Science			Prepared By <u>www.winmeen.com</u>
(a) Satellite	(b) Centromere	(c) Histone	(d) Telomere
Explanation			
	terminal part of chromoso ific sequence of nucleotide		ity to the chromosome. DNA of the
22. The number of se	x chromosomes found in hi	uman diploid cells is	S
(a) 2	(b) 44 (c) 46	(d) 47	
Explanation			
	nes are involved in the dete le has XY and female XX o		They are called sex chromosomes. In ly two
23. Lamp brush chroi	mosome is observed in		
(a) Drosophila	(b) Maize	(c) Acetabulari	ia (d) Yeast
Explanation			
<u>*</u>	e diplotene stage of meiot he unicellular alga Acetabu		ytes of an animal Salamandor and in
24. The four main his	tones present in DNA are _		
(a) H2A, H2B, H3	and H ₄ (b)	HA, H ₂ B, HBC and	H ₄
(c) H_2A , H_2B , H_3	C and H ₄ D (d)	H ₂ , H ₅ H ₃ and H ₄	
Explanation			
	viscous gelatinous substan A, H2B, H3 and H4 are the		NA, RNA, histone and non-histone es found in the chromatin.
	2. Gene	And Genome	
Choose and write the	correct option for the foll	lowing questions.	

I.

- 25. The word gene was coined by _____
 - (a) W. Johannsen (b) Flemming
- (c) Balbiani
- (d) Waldeyer

Explanation

The word gene was coined by W. Johannsen in 1909. A gene is a physical and functional unit of heredity.

26. The physical and functional unit of heredity is _____

The relationship between genes and enzymes was discovered by Beadle and Tatum.

30. The bio-chemical research on Neurospora was conducted by _____

The old elicifical research on recurospora was conducted by _

(a) Charles Darwin

(b) Beadle and Tatum

(c) Reginald Punnett

(d) Bateson and Punnett

Explanation

The relationship between genes and enzymes was discovered by Beadle and Tatum. They conducted bio-chemical research on the fungus Neurospora and concluded that the major role of genes was to carry information for the production of enzymes.

31. The product of gene action is always _____

_				•	
7-0	na	rai	Sc	IAN	
uc	пΕ	ıaı) J	ıcıı	CC

Prepared By www.winmeen.com

- (a) An aminoacid
- (b) A benzene
- (c) A polypeptide
- (d) A sugar

Explanation

The hypothesis has been modified to 'one gene one polypeptide hypothesis' because the product of gene action is always a polypeptide.

- 32. Genome is a _____
 - (a) Number of chromosome

- (b) Totality of RNA sequences
- (c) Totality of the DNA sequences
- (d) Totality of polypeptide sequences

Explanation

Genome may be defined as the totality of the DNA sequences of an organism including DNAs present in mitochondria and chloroplasts

- 33. The genome of virus is made up of _____
 - (a) DNA (b) RNA
- (c) Either DNA or RNA
- (d) Neither DNA nor RNA

Explanation

In all organisms genome is made up of DNA but in viruses, it is made up of either DNA or RNA.

- 34. The genome of garden pea is _____
 - (a) 7
- (b) 12
- (c) 21
- (d) 24

Explanation

Table showing the organisms and their haploid set of chromosom

Sl.No.	Name of organism	Haploid set of chromosome
1.	Arabidopsis thaliana	5
2.	Garden pea	7
3.	Paddy	12
4.	Triticum aestivum	21
5.	Homo sapiens	23
6.	Chimpanzee	24
7.	Sugarcane	40
8.	Ophioglossum	631

- 35. The size of the genome can be expressed in terms of number of base pairs either in _____
 - (a) Kilobases

(b) Megabases

(c) Megabites

(d) Kilobases and megabases

Explanation

Learning Leads To Ruling

The genome size of an individual is expressed in terms of number of base pairs either in kilobases (1000 bp) or in megabases (one million bp).

36. The approximate number of genes in Man is _____

- (a) 30, 000
- (b) 20, 000
- (c) 30,000-40,000
- (d) 50, 000

Explanation

Table showing the genome and approximate number of genes

S. No	Name of the organism	Size of the genome in megabase pairs	Approximate number of genes
1.	Escherichia coli	4.64	4,400
2.	Yeast	12.10	5,800
3.	Arabidopsis thaliana	130.00	26,000
4.	Drosophila	180.00	13,600
5.	Homo sapiens	3,300.00	30,000 - 40,000

- 37. In human genome about ______ of genome involved in biochemical activities like immunological and structural proteins.
 - (a) 23.2%
- **(b)** 38.2%
- (c) 17.5%
- (d) 21.6%

Explanation

In human genome, 38.2% of genome is involved in biochemical activities like synthesis of immunological and structural proteins

- 38. The percentage of genome of human being involved in general functions of the cell is _____
 - (a) 38.2%
- (b) 23.2%
- (c) 17.5%
- (d) 37.2%

Explanation

In human genome, 38.2% of genome is involved in biochemical activities like synthesis of immunological and structural proteins, 23.2% in the maintenance of genome, 21.1% in receiving and giving signals related to cellular activities and remaining 17.5% in the general functions of the cell.

- 39. Arabidopsis thaliana is called
 - (a) An annual plant
- (b) Weed
- (c) Crucifer
- (d) Thale cress

Explanation

Arabidopsis thaliana is an annual crucifer weed called 'thale cress'.

40. The number of genome in Chimpanzee is _____

(a) 7

(b) 12

(c) 24

(d) 23

Explanation

Table showing the organisms and their haploid set of chromosome

	0 0	
Sl.No.	Name of organism	Haploid set of chromosome
1.	Arabidopsis thaliana	5
2.	Garden pea	7
3.	Paddy	12
4.	Triticum aestivum	21
5.	Homo sapiens	23
6.	Chimpanzee	24
7.	Sugarcane	40
8.	Ophioglossum	631

3. Linkage And Crossing Over

I. Choose and write the correct option for the following quest
--

41.	The coup	ling test	cross ratio	1S	

(a) 1:7:7:1

(b) 7:1:1:7

(c) 1:1:1:1

(d) 9:3:3:1

Explanation

The dihybrid test cross ratio obtained is 1:7:7:1

42. The tendency of genes to be inherited together is _____

(a) Linkage

(b) Coupling

(c) Repulsion

(d) Union

Explanation

The tendency of genes or characters to be inherited together because of their location on the same chromosome is called linkage.

43. Bateson and Punnett conducted experiments in _____

(a) Paddy

(b) Ground nut

(c) Sweet pea

(d) Maize

Explanation

In 1906, William Bateson and Reginald Punnett conducted experiments in sweet pea, Lathyrus odoratus to confirm Mendel's dihybrid testcross.

- 44. The tendency of two different dominant or recessive genes to remain separate in the heredity transmission is called _____
 - (a) Coupling
- (b) Repulsion
- (c) Crossing over
- (d) Interaction of genes

If dominant alleles or recessive alleles are present in the different plants, they tend to remain separate	te
resulting in increased parental forms. This aspect is called repulsion.	

45. Coupling and repulsion are the two aspects of _____

(a) Crossing over (b) Linkage (c) Gene interaction (d) Complementary genes

Explanation

Coupling and repulsion offered explanation for higher frequency of parental forms. They are two aspects of a single phenomenon called linkage

46. The genes that are carried on the same chromosome

- (a) Will not assort independently
- (b) Will not remain together in inheritance
- (c) Will assort independently
- (d) Will not take part in crossing over

Explanation

The genes that are carried on the same chromosome will not assort independently because of their tendency to remain linked together. This is called linkage.

- 47. Crossing over takes place between the chromosomes of _____
 - (a) Homologous (b) Sister
- (c) Non sister
- (d) Non sister homologous

Explanation

Crossing over occurs between the nonsister chromatids of paired chromosomes in the region of chiasma. At each chiasma, the two nonsister chromatids break, exchange their segments and rejoin resulting the crossing over.

- 48. A cross over between linked genes allows their recombination during
 - (a) Mitosis
- (b) Amitosis
- (c) Meiosis
- (d) Homologous

Explanation

A crossing over between linked genes allows their recombination during meiosis.

- 49. The process, in which recombination of genes takes place between homologous non sister chromatids is called _____
 - (a) Coupling
- (b) Repulsion
- (c) Linkage
- (d) Crossing over

Explanation

General Science

Prepared By <u>www.winmeen.com</u>

The process, which produces recombination of genes by interchanging the corresponding segments between nonsister chromatids of homologous chromosomes, is called crossing over.						
50. Crossing over takes place in	of prophase I of meiosis.					
(a) Leptotene (b) I	Diplotene (c) Pachytene	(d) Diakinesis				
Explanation						
Crossing over takes place in pa	chytene stage of prophase I of meiosi	S.				
51. In Pachytene stage of meiosis I	chromosomes become te	trad.				
(a) Bivalent (b) T	(c) Bivalent with four chron	matids (d) Diplotene				
Explanation						
In pachytene stage, the bivalen	t chromosome becomes tetrad i.e. wit	h four chromatids.				
52. The adjacent non – sister chror	natids are joined in					
(a) Kinetochore	(b) Secondary constriction					
(c) Primary constriction	(d) Chiasmata					
Explanation						
The adjacent nonsister chromat	tids are joined together at certain poin	ts called chiasmata.				
53. Crossing over occurs in the	region.					
(a) Chiasma (b) Chiasma	ta (c) Constriction (d) S	Secondary constriction				
Explanation						
Crossing over occurs between t	he nonsister chromatids of paired chro	mosomes in the region of chiasma.				
54. Crossing over plays an importa	ant role in					
(a) A sexual reproduction	(b) Evolution					
(c) Mutation	(d) Ploidy					
Explanation						
Crossing over plays an imp	ortant role in the process of evolution	i .				
55. The frequency of crossing over	helps to construct					
(a) DNA sequence	(b) Nucleotide sequence					
(c) Chromosomal map Learning Leads To Ruling	(d) Genetic map	Page 11 of 36				

	Explanation						
	The crossing over	frequency helps in the	construction of genet	ic maps of the chromos	somes.		
56.	Genes are arrange	ed in a chromo	osome.				
	(a) Orbitary	(b) Elliptically	(c) Obliquely	(d) Linearly			
	Explanation						
	Genes are arrange called locus.	ed linearly in a chromos	some. The point in a c	hromosome where the	gene is located is		
57.	The unit of geneti	c map is					
	(a) Picogram	(b) Angstrom	(c) Bridges	(d) Morgan or centi	morgan		
	Explanation						
	· ·	c map is Morgan or cer per cent, then the map of	•				
58.	When the two gen	nes are farther apart in a	chromatid then the p	robability of crossing of	over is		
	(a) Equal	(b) Lesser	(c) Directly proportion	onal (d) Greater			
	Explanation						
	There is a greater chromatid.	probability of occurren	nce of crossing over, v	vhen the two genes are	farther apart in a		
59.	The limited crossing over occurs between the genes which are						
	(a) Nearer	(b) Farther apart	(c) Distant	(d) Away			
	Explanation						
	When two genes are nearer, the probability of occurrence of crossing over between them is limited.						
60.	When the percent linked genes is	age of crossing over be	tween two linked gen	es is 1% then the map	distance between		
	(a) One morgan	(b) Two morgan	(c) Five morg	an (d) 8 morgan			
	Explanation						
	-	age of crossing over bed genes is one morgan.	etween two linked ge	nes is 1 per cent, then	the map distance		

Learning Leads To Ruling

61. Gene map is used to determine _____

Learning Leads To Ruling

Page 13 of 36

	(a) The location and linkage of genes	(b) Arrangement and crossingover of genes						
	(c) Linkage crossing over of genes	(d) Locations and crossing over						
	Explanation							
	Gene mapping is useful to determine the	e location, arrangement and linkage of genes in a chromo	some.					
62	Gene mapping is useful to predict the re	esults of						
	(a) Monohybrid and di-hybrid cross	(b) Any hybrid cross						
	(c) Tri-hybrid and monohybrid cross	(d) Di-hybrid and tri-hybrid cross						
	Explanation							
	Gene mapping is useful to predict the re	esults of dihybrid and trihybrid crosses.						
63	The point in a chromosome where the go	gene is located is called						
	(a) Chiasma (b) Synapse	(c) Chiasmata (d) Locus						
	Explanation							
	Genes are arranged linearly in a chromosome. The point in a chromosome where the gene is located is called locus.							
	4. Recon	mbination Of Chromosome						
I. (Choose and write the correct option for	r the following questions:						
64	. Recombination of chromosome takes pla	lace in stage of prophase I of meiosis.						
	(a) Leptotene (b) Zygotene	(c) Pachytene (d) Diplotene						
	Explanation							
	Recombination of chromosome takes pla	lace in Pachytene stage of prophase I of meiosis.						
65	. Crossing over between linked genes resu	sults in						
	(a) Synapsis (b) Recombination	(c) Linkage (d) Repulsion						
	Explanation							
	Crossing between the linked genes resul	lts in genetic recombination.						
66	. Recombination of chromosomes takes p	place in stage of meiosis.						
	(a) Prophase I (b) Metaphase I	(c) Araphase (d) Telophase						
	Explanation							

	Recombination takes place in pachytene stage of prophase I of meiosis.						
67	67. In Lathyrusodoratus percent of test cross progeny were recombinants.						
	(a) 8	(b) 12	(c) 15	(d) 20			
	Explanation						
	According to Ba recombinants.	teson and Pu	nnet, in Lathy	vrus odoratus 12 per cent of the test cross progeny were			
68	. Tightly linked ge	nes shows the	gene pairs wi	ith recombination with			
	(a) Low percenta	age	(b)	Equal percentage			
	(c) High percenta	ıge	(d)	Lesser than 10%			
	Explanation						
	Gene pairs that ha	ad very low p	ercentage of re	ecombination are known as tightly linked genes.			
69	. The gene pairs w	The gene pairs with higher percentage are termed as					
	(a) Tightly linked genes		(b)	Closed genes			
	(c) Coupled gene	s	(d)	Loosely linked genes			
	Explanation						
	The gene pairs w	ith higher per	centage are ter	rmed as loosely linked genes.			
70	. The percentage o	f recombinati	on can be dete	ermined by			
	(a) $\text{Crossing over frequency of the content of$	equency ency	(b)	Linkage frequency total offsprings			
	(c) $\frac{No.of\ total\ o}{No.of\ recombina}$	ffspring int offspring	(d)	No. of recombinant offspring Total number of offsprings			
	Explanation						
	The percentage recombination is determined by dividing the number of recombinant offspring by the total number of offspring.						
71	. Recombinants sho	ows					
	(a) Same allele			(b) Different linkage of allele			
	(c) Different links	age allele thai	the parents	(d) Different linkage allele than offspring			
	Explanation						

Recombinant shows a different linkage of alleles than their parents.

5. Mutation

I. (Choose and write the co	rrect option for	the fol	lowing questions:		
72.	. Hugo de Vries first used	d the term mutati	on base	d on his observation	n on	
	(a) Sorghum	(b) Neurospor	a	(c) Oenothera la	marckiana	(d) Cicergigas
	Explanation					
	Hugo de Vries first used	d the term mutati	on base	d on his observation	n on Oenot	hera lamarckiana.
73.	. Biochemical mutants of	failed to	synthesi	ize certain amino a	cids.	
	(a) Sorghum	(b) Neurospo	ra	(c) Cicerarietinun	1	(d) Cicergigas
	Explanation					
	Biochemical mutants of influence the genes and	-	•		no acids. So	ome mutations drastically
74.	. The term mutation refer	rs to				
	(a) Slow change (b) R	apid change	(c) Suc	dden change (d)	Variations	
	Explanation					
	Sudden change in the go	enetical set up of	an orga	nism is defined as	mutation.	
75.	. The term mutation was	first used by				
	(a) T.H. Morgan	(b) Edg	ge Alter	nburg		
	(c) Muller and Correns	(d) Hu	igo de V	/ries		
	Explanation					
	In 1901, Hugo de Vries	first used the tern	n mutati	on based on his ob	servation o	n Oenothera lamarckiana.
76.	. Charles Darwin termed	the sudden muta	tional c	hanges as	_	
	(a) Gametes	(b) Sports	(c) Dis	continuous change	(d) Co	ntinuous change
	Explanation					
	Charles Darwin termed	these sudden cha	ange as	'sports'.		
77.	According to Bateson, 1	nutation is a				
Le	(a) Continuous change earning Leads To Ruling		(b) Dis	scontinuous chan	ge	Page 15 of 36

	(c) Frequent change	ge	(d) No change				
	Explanation						
	•	eson, mutation is a d	•	. Based on molecular basis of heredity eotides of gene.	y,		
78.	Lethal mutation is	observed in					
	(a) Pea	(b) Paddy	(c) Sorghum	(d) Bengal gram			
	Explanation						
	described as letha	•	pple, in the plant Sor	leath to the individual. Such mutation aghum, recessive mutant fails to produce			
79.	Mutant variety wit	th large seeded Benga	l gram is				
	(a) Cicerarietinum		(b) Vignamungo				
	(c) Cicergigas		(d) Cicer vulgaris				
	Explanation						
	Small seeded Cice case of gene mutat		gram) suddenly get m	nutated to large seeded Cicer gigas is th	ıe		
80.	Lethal mutation ca	nuses the					
	(a) Phenotypic effe	ect	(b) Biochemical cha	inges			
	(c) Genotypic effe	ct	(d) Death of the org	ganism			
	Explanation						
	Some mutations drastically influence the genes and cause death to the individual. Such mutation is described as lethal mutation.						
81.	If an organism can	anot synthesis certain	amino acids, it may be	e due to mutation.			
	(a) Somatic	(b) Phenotypi	c (c) Lethal	(d) Biochemical			
	Explanation						
		Mutations that affect the biochemical reactions are called biochemical mutations. For example, biochemical mutants of Neurospora failed to synthesize certain amino acids.					
82.	Gene mutation is o	caused by the	of nucleotide pair.				

General Science (a) Addition (b) Substitution (c) Deletion (d) Transition Explanation The gene mutation may be caused by loss or deletion of a nucleotide pair. This is called deletion mutation and reported in some bacteriophages. 83. Deletion mutation is reported in ______ (a) Virus (b) Neurospora (c) Bacteriophage (d) Bacteria

Explanation

The gene mutation may be caused by loss or deletion of a nucleotide pair. This is called deletion mutation and reported in some bacteriophages.

84. Point mutations brings changes in the ______

(a) Loci (b) DNA segment (c) RNA segment (d) Entire chromosome

Explanation

Point mutation is sudden change in small segment of DNA either a single nucleotide or a nucleotide pair. Gross mutation is a change involving more than one or a few nucleotides of a DNA.

85. Presence of extra nucleotide in gene results in _____

(a) Substitution (b) Addition (c) Deletion (d) Subtraction

Explanation

Addition of one or more nucleotides into a gene results in addition mutation.

86. When a purine is replaced by another purine, it is said to be a ______

(a) Addition (b) Transition (c) Transversion (d) Substitution

Explanation

When a purine or a pyrimidine is replaced by another purine or pyrimidine respectively this kind of substitution is called transition.

87. When a mutation involves the replacement of a purine for pyrimidine or vice versa, it is called ______

(a) Addition (b) Deletion (c) Transition (d) **Transversion**

Explanation

When a mutation involves the replacement of a purine for pyrimidine or viceversa this is called transversion.

88.	Ultraviolet rays an	nd electromagnetic rad	iation are the	_ mutag	genic agents.		
	(a) Physical	(b) Chemical	(c) Environme	ental	(d) All the above		
	Explanation						
	Electromagnetic ra examples for phys		e α β and γ , ultraviole	et rays, 1	temperature, etc. are some of the		
89.	Chemical mutager	ns are					
	(a) α and β rays		(b) Cosmic rays				
	(c) Ultraviolet ray	s	(d) Methyl methane	sulpho	nate		
	Explanation						
		nic agents. eg. Nitrous			sms. Such chemicals are called onate (MMS) and ethyl methane		
90.	Mutant variety which is an early maturing, disease resistant and enriched with protein is						
	(a) Paddy	(b) Barely	(c) Wheat	(d) Oa	ts		
	Explanation						
		Mutant varieties of wheat are early maturing, disease resistance and they are enriched with protein. Mutant varieties of paddy produce many tillers with long grains.					
91.	Mutant varieties of paddy produce						
	(a) Grains with till	lers	(b) Tillers with long	grains			
	(c) Tillers with sm	nall grains	(d) No tillers				
	Explanation						
	Mutant varieties of wheat are early maturing, disease resistance and they are enriched with protein. Mutant varieties of paddy produce many tillers with long grains.						
92.	The unit of genes	which are responsible	for mutation and recor	nbinatio	on respectively are		
	(a) Muton and re	econ	(b) Cistron and recon				
	(c) Muton and cist	tron	(d) Cistron and mason	n			
	Explanation						

The study of mutant strains of viruses helps us to know the fine structure of gene. The genes are made up of small functional units such as cistron, recon and muton. Cistron is an unit of function, recon is the unit of recombination and muton is the unit of mutation.

93. Functional units of genes are

- (a) Recon
- (b) Muton
- (c) Ciston
- (d) Mason

Explanation

The study of mutant strains of viruses helps us to know the fine structure of gene. The genes are made up of small functional units such as cistron, recon and muton. Cistron is an unit of function, recon is the unit of recombination and muton is the unit of mutation.

6. Chromosomal Aberrations

I. Choose and write the correct option for the following questions:

- 94. The gametes of Drosophila melanogaster carry
 - (a) Three chromosomes

(b) Four chromosomes

- (c) Seven chromosomes
- (d) Eight chromosomes

Explanation

The gametes of Drosophila melanogaster carry Four chromosomes

95. Nullisomy is represented by

- (a) 2n 1
- (b) 2n + 1
- (c) 2n + 2
- (d) 2n-2

Explanation

Nullisomy is the condition in which a pair of homologous chromosomes is lost from the diploid set i.e. 2n-2.

- 96. Deletion of a large part of a chromosome will lead to
 - (a) Genomic mutation

(b) Death of an organism

(c) Euploidy

(d) All the above

Explanation

When the deletion occurs in the middle of the chromosome then, it is called intercalary deletion. Most of the deletions lead to **death** of an organism.

97. When the deletion occurs in the middle of the chromosomes it is called

(a) Terminal	(b) Intercala	ry (c)	Recessive	(d) Dominant		
Explanation						
	on occurs in the middle ead to death of an organ		e then, it is called	intercalary deletion. Most		
98. Deletion occurs i	near the end of the chro	mosomes is seen in	1			
(a) Drosophila a	and Maize	(b) Maize and So	rghum			
(c) Drosophila ar	nd Sorghum	(d) Sorghum and	Triticum			
Explanation						
When the deletion Drosophila and M		l of the chromoso	me, then it is ca	lled terminal deletion. Eg.		
99. A number of dup	lications reported in					
(a) Corn and pea	s (b) Drosophi	la (c) Neuro	spora (d) A	Aspergillus		
Explanation						
In Drosophila, co	•	of duplications are	e reported. Some	e duplications are useful in		
100. What type of	mutation is shown in a	,b,c,d,e,f,c,d,e,f,g,l	1?			
(a) Deficiency	(b) Duplicati	on (c) Transl	ocation (d) I	nversion		
Explanation						
When a segment of a chromosome is present more than once in a chromosome then, it is called duplication. For example, the order of genes in a chromosome is a, b, c, d, e, f, g and h. Due to aberration, the genes 'g' and 'h' are duplicated and the sequence of genes becomes a, b, c, d, e, f, g, h, g and h.						
101. In pericentric	inversion the inverted	segment of the chr	omosomes conta	in		
(a) Centreola	(b) Centrosome	(c) Centromere	(d) Meta ce	ntre		
Explanation						
In pericentric inv	version, the inverted seg	gment of the chrom	osome contains o	centromere.		
102. In inversion t	he order of genes in a c	chromosomal segm	ent is reversed by	y angle of		
(a) 150°	(b) 170°	(c) 180°	(d) 190°			

Inversion is another chromosomal abnormality in which, the order of genes in a chromosomal segment is reversed by an angle of 180°.

- 103. The 17th human chromosome is
 - (a) Acrocentric (b) Metacentric
- (c) Submetacentric
- (d) Telocentric

Explanation

For example the 17th human chromosome is acrocentric, while in Chimpanzee the corresponding chromosome is metacentric.

- 104. In Chimpanzee the 17th chromosome is
 - (a) Acrocentric
- (b) Metacentric
- (c) Submetacentric
- (d) Telocentric

Explanation

For example the 17th human chromosome is acrocentric, while in Chimpanzee the corresponding chromosome is metacentric.

- 105. The inerted segment of the chromosome has to centrosome in
 - (a) Acrocentric
- (b) Paracentric
- (c) Pericentric
- (d) Metacentric

Explanation

In paracentric inversion, the inverted segment of the chromosome has no centromere.

- 106. Which of the following is said to be the illegitimate crossing over
 - (a) Synapsis and chiasmata
 - (b) Intrachromosomal aberration
 - (c) Translocation between homologous chromosomes
 - (d) Translocation between non homologous chromosomes

Explanation

When translocation occurs between two non-homologous chromosomes, then it is called reciprocal translocation or illegitimate crossingover.

- 107. Translocation in which one member of each pair of chromosomes is normal and the other is interchanged is
 - (a) Heterozygous translocation
- (b) Homozygous translocation

(c) Reciprocal tra	anslocation	(d) Both b and c			
	xplanation		` /			
In	heterozygous	translocation, one monterchanged segment.	ember of each pai	r of chromo	osomes is normal and the o	other
108.	Translocation	n causes Disor	rders.			
(a) Fertility	(b) Genetic	(c) Here	ditary	(d) Phenotypic	
<u>E</u>	<u>xplanation</u>					
	ranslocation pl sorders.	ays an important rol	e in species differ	rentiation. T	Franslocations causes hered	itary
109.	Alterations in	n the number of chrom	osome from the dip	oloid set is c	alled	
(a) Translocation	1	(b) Subst	itution		
(0) Numerical cl	hromosomal aberrati	on (d) Dupli	cation		
<u>E</u>	<u>xplanation</u>					
	lterations in the	ne number of chromo	somes from the d	ploid set is	called numerical chromoso	omal
110.	Diploidy con	dition is seen in	.,			
(a) Cleavage	(b) Fertiliza	tion (c) Game	togenesis	(d) Oogenesis	
<u>E</u>	<u>xplanation</u>					
	-	ants and animals, the so wo gametes during fer		two sets of	chromosome. Diploidy is for	med
111.	Addition of o	one or more haploid se	t of its own genome	e in an orgai	nism results	
(a) Euploidy	(b) Aneuploi	dy (c) Auto	polyploidy	(d) Allopolyploidy	
<u>E</u>	<u>xplanation</u>					
		or more haploid set pes and banana are au	=	_	anism results in autopolyplo autotetraploid.	oidy.
112.	This is the fir	rst man made cereal	••••			
(a) Paddy	(b) Maize	(c) Triricale	(d) W	heat	
<u>E</u>	<u>xplanation</u>					

Triticale is the first man made cereal. It is obtained by crossing a wheat Triticum durum (2n = 4x = 28) and a rye Secale cereale (2n = 2x = 14). The F1 hybrid (2n = 3x = 21) is sterile.

- 113. These are autotriploids
 - (a) Grapes and apple

- (b) Apples and banana
- (c) Watermelons and banana
- (d) Apple and brinjal

Explanation

Addition of one or more haploid set of its own genome in an organism results in autopolyploidy. Watermelon, grapes and banana are autotriploids, whereas apple is an autotetraploid.

- 114. Increase in one or more haploid set of chromosomes from two different species resulting in
 - (a) Autopolyploidy

(b) Allopolyploidy

(c) Euploidy

(d) Aneuploidy

Explanation

Increase in one or more haploid set of chromosomes from two different species result in allopolyploidy.

- 115. The diploid set of chromosomes in Triticum durum is
 - (a) 2n = 28
- (b) 2n = 24
- (c) 2n = 42
- (d) 2n = 48

Explanation

Triticale is the first man made cereal. It is obtained by crossing a wheat Triticum durum (2n = 4x = 28) and a rye Secale cereale (2n = 2x = 14). The F1 hybrid (2n = 3x = 21) is sterile.

- 116. The F₁ hybrid of the cross between Triticum durum and Secale cereal is
 - (a) Fertile, 2n = 21
- (b) Sterile 2n = 14
- (c) Sterile 2n = 21
- (d) Fertile 2n = 48

Explanation

Triticale is the first man made cereal. It is obtained by crossing a wheat Triticum durum (2n = 4x = 28) and a rye Secale cereale (2n = 2x = 14). The F1 hybrid (2n = 3x = 21) is sterile.

- 117. Monosomy is due to loss of from the diploid set.
 - (a) A chromosome

(b) A pair of chromosome

(c) 3 chromosome

(d) Number of chromosome

Explanation

Monosomy is due to loss of a chromosome from the diploid set i.e. 2n - 1. Nullisomy is the condition in which a pair of homologous chromosomes is lost from the diploid set i.e. 2n - 2.

118.	When a pair	of homologous	chromosomes	is lost	from the	diploid se	t is called	
------	-------------	---------------	-------------	---------	----------	------------	-------------	--

- (a) Autosomy
- (b) Allosomy
- (c) Monosomy
- (d) Nullisomy

Explanation

Nullisomy is the condition in which a pair of homologous chromosomes is lost from the diploid set i.e. 2n-2.

- 119. Trisomy can be written as
 - (a) 2n n
- (b) 2n 2
- (c) 2n + 2
- (d) 2n + 1

Explanation

Trisomy results due to the addition of one chromosome to diploid set of chromosomes. It is represented by 2n + 1.

- 120. Trisomies are observed in
 - (a) Datura metal

(b) TridaxProcumbens

(c) Oryza sativa

(d) Daturastramonium

Explanation

Trisomy results due to the addition of one chromosome to diploid set of chromosomes. It is represented by 2n + 1. Trisomics are observed in Datura stramonium.

- 121. The addition of two chromosomes to diploid set of chromosomes results in
 - (a) Monosomy
- (b) Disomy
- (c) Trisomy
- (d) Tetrasomy

Explanation

Tetrasomy results due to the addition of two chromosomes to diploid set of chromosome. It is represented by 2n+2.

- 122. Polyploid plays an important role in
 - (a) Agriculture
- (b) Hybrid culture
- (c) Horticulture
- (d) Tissue culture

Explanation

Polyploidy plays an important role in plant breeding and horticulture.

123. Tetraploid plays an important role in

(2	a) Ascorbic acid	(b) Vitamin A	(c) Vitamin B1	(d) Vitamin D			
<u>E</u>	<u>Explanation</u>						
	etraploid cabbages and itamin A.	tomatoes contain moi	re ascorbic acid when	reas tetraploid corn contains more			
124.	Tetraploid corn conta	ains more					
(8	a) Vitamin C	(b) Vitamin A	(c) Vitamin D	(d) Vitamin E			
<u>E</u>	<u>Explanation</u>						
	etraploid cabbages and itamin A.	tomatoes contain mor	re ascorbic acid whe	reas tetraploid corn contains more			
125.	The type of chromos	omal aberrations found	in pea is				
(8	a) Deletion	(b) Duplication	(c) Inversion	(d) Translocation			
<u>E</u>	<u>Explanation</u>						
	n Drosophila, corn and ne evolution of the orga	_	lications are reported	l. Some duplications are useful in			
		7. Dna As A	Genetic Material				
I. Ch	noose and write the con	rrect option for the fo	llowing questions:				
126.	Double helix DNA n	nodel was proposed by					
(a	a) Watson and Crick	(b) O.	T. Avery et al				
(0	c) Griffith	(d) Sti	nberg				
<u>E</u>	<u>xplanation</u>						
	In 1953, James Watson and Francis Crick proposed double helix DNA model on the basis of x-ray diffraction studies with photographs of DNA taken by Wilkins and Franklin.						
127.	The width of DNA n	nolecule is					
(8	a) 18 (b) 20) Å (c) 34	Å (d) 3	35Å			
<u>E</u>	<u>xplanation</u>						
	The two strands are interwined in clockwise direction. The width of DNA molecule is 20 Å. The strand completes a turn every 34 Å along its length.						
128.	The genetic material	in most of the organism	ns and higher organi	sms is			
Lear	Learning Leads To Ruling Page 25 of 36						

Gen	eral Science				Prepared By <u>www.winmeen.com</u>		
((a) Proteins	(b) DNA	(c) R	NA	(d) Generic material		
	Explanation						
	It is universally a organisms.	accepted that DNA i	s the genetic	material in	most of the organisms and higher		
129	RNA is a gene	etic material in					
((a) Bacteria	(b) Plant vir	us (c) Fu	ıngi	(d) Bacteriophage		
	Explanation						
	In most of the plan	nt viruses, RNA is the	genetic mater	ial.			
130	. The biologist I	Frederick Griffith con	ducted experin	nents in			
((a) Diplococcus pr	neumonia	(b) Diplococ	cus pneumo	nia		
((c) Mycobacterium	n tuberculosis	(d) Mycobac	terium lepera	ae		
	Explanation						
		riologist Frederick Gr ains of virulent Diplo		•	ent using Diplococcus pneumoniae.		
131	. The virulent s	strain synthesized a	smooth polysa	ccharide coa	ast produces smooth colonies is a		
((a) Strain – R	(b) Strain – S	(c) G	ram strain	(d) Strain Blue		
	Explanation						
,	The virulent strain synthesized a smooth polysaccharide coat and produces smooth colonies. This strain was called strain-S. Another strain which lacked the proper polysaccharide coat is harmless and produces rough colonies. This strain was called strain-R.						
132	The evidence i	for DNA being the ge	netic material	first illustrate	ed by		
	(a) Watson and Cr	rick	(b) O.T. Ave	ry et al			
	(c) Griffith		(d) Stinberg				
:	Explanation						
	In 1928, the bacteriologist Frederick Griffith conducted an experiment using Diplococcus pneumoniae.						
133	Each nucleic a	cid is made up of					
	(a) Genes	(b) Chromosomes	(c) DNA	(d) Nucleo	otides		

DNA and RNA are identifi	d in th	e nucleus.	They ar	e complex	macro	molecules	and	made	up	of
millions of smaller units call	d nucl	eotides.								

134. Each nucleotide of DNA contains the sugar called _____

(a) Pentose

(b) A phosphate

(c) Ribose

(d) Purine

Explanation

Each nucleotide is made up of pentose sugar, a phosphate group and a nitrogenous base.

135. Purine and pyrimidine are the _____

(a) Nitrogenous bases

(b) Ribose sugar

(c) Aminoacids

(d) Polysaccharide

Explanation

The nitrogenous bases are of two kinds – purines and pyrimidines. Adenine and guanine are the purines and thymine and cytosine are pyrimidines.

136. In RNA the thymine is replaced by _____

(a) Adenine

(b) Cytosine

(c) Uracil

(d) Guanine

Explanation

The nitrogenous bases found in DNA are adenine, guanine, cytosine and thymine, whereas in RNA thymine is replaced by uracil.

137. The sub – unit containing only sugar and nitrogenous base is called _____

(a) Nucleoside

(b) Nucleotide

(c) Aminoacid

(d) Polypeptide

Explanation

The sub-unit containing only sugar and nitrogenous base is known as nucleoside.

is the building blocks of DNA.

(a) Nucleotides

(b) Aminoacids

(c) Nitrogenous bases

(d) Ribose sugar

Explanation

Four kinds of nucleotides are seen in DNA molecule. They are adenine nucleotide, guanine nucleotide, thymine nucleotide and cytosine nucleotide. Hence, nucleotides are building blocks of DNA.

Learning Leads To Ruling

General Sci	ence			Prepared By <u>www.winmeen.com</u>		
139.	is the "co	oil of life".				
(a) DNA	(b) R	NA	(c) RNA duplex	(d) DNA duplex		
Explana	<u>tion</u>					
		ed structure in duplex is "coil		are coiled around each other forming a		
140. The l	backbone of DN	IA helix is form	ed of			
(a) Sugar	•		(b) Sugar and phosp	phate		
(c) Nitro	genous base		(d) Sugar and nitroge	nous base		
Explana	<u>tion</u>					
	sbone of the hoto		of sugar and phosphate	e molecule. The nitrogenous bases are		
141. In ba	se pair rule ade	nine is always p	aired with			
(a) Thyr	nine	(b) Uracil	(c) Guanine	(d) Cytosine		
Explana	<u>tion</u>					
The base	s pair in specifi	c manner. Aden	ine always pairs with the	hymine and guanine pairs with cytosine.		
142. There	e are	hydrogen bonds	s between G and C.			
(a) One	(b) T	wo	(c) Three	(d) None		
Explana	<u>tion</u>					
The two showed t		ands are held to	gether by unstable hyd	drogen bonds. Erwin Chargaff in 1949		
143. The t	wo strands are	interwined in				
(a) Clock	kwise direction	1	(b) Anticlockwise			
(c) Oppo	site direction		(d) Same direction			
Explana	<u>tion</u>					
The two strands are interwined in clockwise direction. The width of DNA molecule is 20 Å. The strand completes a turn every 34 Å along its length.						
144. In re	144. In replication process DNA produces					
(a) RNA	(b) Exact co	pies of itself	(c) Polynucleotide	(d) Aminoacids		
Learning Le	ads To Ruling			Page 28 of 36		

Replication is the process by which DNA makes exact copies of itself. Replication is the basis of life and takes place during the interphase stage.

- 145. _____ proposed semiconservative method of replication of DNA.
 - (a) Holley

(b) Messelson and Stahl

(c) Watson and Crick

(d) Erwin Chargafrf

Explanation

Watson and Crick suggested the semiconservative method of replication of DNA. This has been proved by Messelson and Stahl's in their experiments on Escherichia coli using radioactive isotopes.

- This need not necessarily be equal to [G] + [C] 146.
 - (a) [A] + [T]
- (b) [G] + [T]
- (c) [A] + [C] (d) [G] + [C]

Explanation

The proportion of adenine is equal to thymine and so also of guanine is equal to cytosine. But the [A] + [T] need not necessarily be equal to [G] + [C].

- The Guanine and cytosine can be joined by ______ bonds 147.
 - (a) Two hydrogen bonds
- (b) One hydrogen bond
- (c) Weak hydrogen bonds
- (d) Three hydrogen

Explanation

There are two hydrogen bonds between adenine and thymine (A= T) and there are three hydrogen bonds between guanine and cytosine (G=C) pairing.

- 148. Watson and Crick model of DNA is called _____
 - (a) A form DNA
- **(b)** \mathbf{B} form \mathbf{DNA} **(c)** \mathbf{C} form \mathbf{DNA} **(d)** \mathbf{D} form \mathbf{DNA}

Explanation

Watson and Crick model of DNA is called B-form DNA. The chains in B-form DNA are in right handed orientation.

- 149. Replication of DNA takes place during the _____
 - (a) Prophase
- (b) Metaphase
- (c) Interphase
- (d) Anaphase

Explanation

	Replication is the process by which DNA makes exact copies of itself. Replication is the basis of life and takes place during the interphase stage.							
150. Messelson and Stahl made experiments on								
	(a) Bacteriophage (b) Neurospora	(c) Escherichia coli (d) Higher organisms						
	Explanation							
	by Messelson and Stahl's in their ex	Watson and Crick suggested the semiconservative method of replication of DNA. This has been proved by Messelson and Stahl's in their experiments on Escherichia coli using radioactive isotopes. The replication of chromosome in E. coli is completed in 40 minutes.						
15	During replication of DNA, the	two complementary strand of DNA uncoils and separate in a						
	(a) Zipper like fashion	(b) Straight line						
	(c) Circular motion	(d) Wave like motion						
	Explanation							
		omplementary strand of DNA uncoil and separate from one end elicase unwinds the two strands and as a result replication fork is						
152	2. The enzyme which is used to unw	inds DNA is						
	(a) RNA polymerase	(b) Helicase						
	(c) DNA polymerase	(d) Ligase						
	Explanation							
The enzyme helicase unwinds the two strands and as a result replication fork is formed. As unwinds, the part of the DNA that is found above the replication fork becomes supercoils.								
153 is the enzymereleases the super coils.								
	(a) Topoisomerase (b) Helicase	(c) RNA polymerase (d) RNA synthetase						
	Explanation							
	An enzyme called topoisomerase rel strands grow by the addition of nucleo	eases these supercoils. Based on separated DNA strands, new otides.						
154	4. These are involved in the synthesi	s of new DNA						
	(a) DNA polymerase	(b) RNA primers and RNA synthetase						

	(c) RNA primer and primase	(d) DNA primer and primase
	Explanation	
	•	ngs are required. One is RNA primer and the enzyme primase. he newly formed RNA primer nucleotides, which leads to the
15	5. The newly synthesized small fragme	ents of DNA are called
	(a) Chrosomal segment	(b) Gene segment
	(c)Okazaki fragment	(d) Complementary fragment
	Explanation	
	In the other strand, DNA is synthesized are linked by the enzyme called ligase	in small fragments called Okazaki fragments. These fragments
15	6. Okazaki fragments are linked by the	enzyme called
	(a) Restriction nuclease	(b) Endonucleases
	(c) Ligase	(d) DNA synthetase
	Explanation	
	In the other strand, DNA is synthesized are linked by the enzyme called	in small fragments called Okazaki fragments. These fragments
15	7. In semi discontinuous replication on	e of the strands is parental and the strand.
	(a) Other is new	(b) Other is also parental
	(c)Other is zipper	(d) Entirely different

In the resulting DNA, one of the strand is parental and the other is the newer strand which is formed discontinuously. Hence, it is called semidiscontinuous replication.

158. In DNA, the internucleotide distance is _____

- (a) 34Å
- (b) 20Å
- (c) 3.4 Å
- (d) 20.4Å

Explanation

The width of DNA molecule is 20 \mathring{A} . The strand completes a turn every 34 \mathring{A} along its length. There are ten nucleotides per turn. The internucleotide distance is 3.4 \mathring{A} .

- 159. Nitrogen base pair rules are proposed by _____
 - (a) Watson
- (b) Griffith
- (c) Mendel
- (d) Chargaff

The nitrogenous bases are attached to sugar molecules. The two nucleotide strands are held together by unstable hydrogen bonds. Erwin Chargaff in 1949 showed that

8. Structure Of Rna And Its Types

- I. Choose and write the correct option for the following questions:
- 160. RNA is universally present in all organisms except in _____
 - (a) TMV
- (b) Bacteria
- (c) Algae
- (d) Explanation

Explanation

The Ribonucleic acid is otherwise known as RNA. This is universally present in all organisms except in DNA viruses.

- 161. mRNA is about _____ of the RNA content of the cell
 - (a) 10 20%
- (b) 5 10%
- (c) 3-5%
- (d) 20 30%

Explanation

mRNA is about 3 to 5 per cent of the RNA content of the cell.

- 162. In bacteria cell, there are more than ______ tRNAs.
 - (a) 200
- **(b)** 70
- (c) 300
- (d) 400

Explanation

In bacterial cell, there are more than 70 tRNAs and in eukaryotic cells the number is even greater.

- 163. The important function of RNA is synthesis of _____
 - (a) Starch
- (b) Nucleotids
- (c) Pentose sugar
- (d) Vitamins

Explanation

The mRNA is produced as a complementary copy of the DNA, which is involved in synthesis.

- 164. Genetic information on the DNA are transcribed into the mRNA by a process called _
 - (a) **Transcription** (b) Tranduction
- (c) Translation
- (d) Transvversion

	Genetic informations on t	the DNA are t	ranscribed into	o the mRNA by a process called transcription.
165.	The type of gene that is	s involved in	protein synthes	sis depends upon their
(a) Length nucleotides		(b) Width of	the nucleotide
(c) Sequence of nucleotid	es	(d) Nature of	nucleotide
<u> </u>	Explanation			
	The type of gene that is invalueleotides.	volved in prot	ein synthesis d	lepends upon their length, kinds and sequence of
166.	The mRNA is always _			
(a) Double stranded		(b) Single str	randed
(c) Twisted double strande	d	(d) Circular	
<u> </u>	Explanation			
	The mRNA is always sing which is involved in protein		The mRNA is μ	produced as a complementary copy of the DNA,
167.	In protein synthesis mF	RNA produce	d as a	of DNA
(a) Extra copy	(b) New copy	(c) Complem	nentary copy (d) Separate copy
<u> </u>	Explanation			
Τ	The mRNA is produced as	a complemen	ntary copy of tl	he DNA, which is involved in protein synthesis.
168.	The other name of tRN	IA is		
(;	a) Transfer RNA (b) Solu	ıble RNA	(c) mRNA	(d) rRNA
<u> </u>	Explanation			
	Fransfer RNA is also know other types of RNAs.	wn as soluble	RNA (sRNA)	. The tRNA is a small molecule compared with
169.	The amount of tRNA is	n the cell is al	oout	-
(:	a) 15% (b) 20%		(c) 25%	(d) All the above
E	Explanation			
t]	RNA amounts to about 15	5 per cent of t	total RNA of t	he cell. The tRNA molecule performs a number

Learning Leads To Ruling

of functions.

170.	170. This acts as a carrier of aminoacid to the site of protein synthesis						
(8	n) mRNA	(b) tRNA	(c) rRNA	A	(d) sRNA		
<u>E</u>	<u>xplanation</u>						
	he most import ynthesis.	ant function of tRN	A one is to	act as a carri	ier of aminoacid to	the site of protein	
171.	There are abo	out types	of tRNA.				
(8	a) 20	(b) More t	han 20	(c) 30	(d) 10		
<u>E</u>	xplanation						
T	here are about n	nore than 20 types o	f tRNAs. Ea	ach tRNA is s	pecific for a particu	ılar amino acid.	
172.	There 1965, _	sugges	sted the clove	er leaf model o	of tRNA.		
(8	a) Clover	(b) R.W. Holley	(c) Miller	(d) Watson		
<u>E</u>	<u>xplanation</u>						
		olley suggested the essumes clover leaf li			•	plecule consists of a	
173.	The anticodor	n arm of tRNA has _					
(2	a) Two nucleotic	les	(b) Three	ee nucleotides	1		
(0	e) Four nucleotic	des	(d) One	nucleotide			
<u>E</u>	<u>xplanation</u>						
m		m has three anticode rotein synthesis i.e.			-	plementary codon in hree nucleotides of	
174.	Extra arm is a	also called	_				
(2	a) sRNA arm	(b) Amino	acid pool (c) Variable a	rm (d) Curved	arm	
<u>E</u>	xplanation						
Ir	n certain tRNAs	in addition to these	four arms an	n extra arm cal	led variable arm oc	curs	

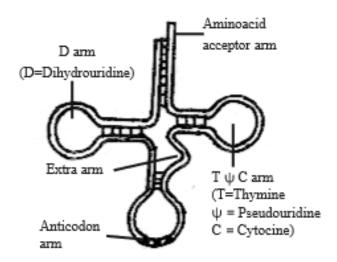


Fig. 3.10 Structure of tRNA

175.	Each tRNA is	made up of	ribo	nucleotides.
------	--------------	------------	------	--------------

- (a) 50
- (b) 60
- (c) 73 to 93
- (d) 90

The tRNA molecules are made up of 73 to 93 ribonucleotides.

- rRNA are produced in the _____ 176.
 - (a) Nucleus
- (b) Ribosome
- (c) Mitochondria
- (d) Cytoplasm

Explanation

rRNA are produced in the nucleus. They are the most stable forms of RNA

- rRNA is found in _____ 177.
 - (a) Nucleus
- (b) Ribosome
- (c) Mitochondria
- (d) Cytoplasm

Explanation

This is found in the ribosomes. The rRNA represents about 40 to 60 per cent of the total weight of the ribosomes.

- DNA contains _____ sugar 178.

 - (a) **5C deoxy ribose** (b) **4C** oleoxy ribose (c) Ribose sugar
- (d) Pentosa sugar

Explanation

DNA contains a 5C deoxyribose.

RNA contains _____ sugar 179.

Learning Leads To Ruling

(a) 4C ribosxe sugar

- (b) 5C ribose sugar
- (c) 5C deoxy ribose sugar
- (d) 5C sugar

Explanation

RNA contains five carbon sugar ribose

- 180. mRNA carries the genetic information from DNA to the _____
 - (a) Chloroplasts
- (b) Ribosomes
- (c) Mitochondria
- (d) Lysosomes

Explanation

As the name suggests mRNA carries the genetic information from DNA to the ribosomes.

- 181. Clover leaf model of tRNa was suggested by ______
 - (a) Johannsen
- (b) Waldeyer
- (c) R.W. Holley
- (d) Watson

Explanation

In 1965, R.W. Holley suggested the cloverleaf model of tRNA. Though tRNA molecule consists of a single strand, it assumes clover leaf like structure through folding.