11th 12th Science Notes Questions

[Tnpsc Syllabus Portion]

Biology In Human Welfare

1. Food Production

I.	Choose and	write th	ie correct (option fo	r the f	ollowing	questions

I. Cho	I. Choose and write the correct option for the following questions					
1.	Which pathogen causes the	blast diseas	se of rice?			
	(a) Cercospora personata	(1	(b) Pyricularia oryzae			
	(c) Xanthomonas citri	(d) Tungro viru	ıs		
	Explanation					
Disease incited by a fungus, Pyricularia oryzae. The fungus Pyricularia oryzae who possesses hyaline and septate mycelium. On maturity, the colour of mycelium change brown. Conidia are produced terminally. Each conidium is obpyriform septate with a snappendage.						
2.	What is the collateral host I	olant of Pyr	ricularia oryza	e?		
	(a) Oryza sativa		(b) Digitaria marginata			
	(c) Arachis hypogea	(d) Citrus plan	t		
	Explanation					
	The secondary host plants destroyed.	such as Dig	gitaria margin	ata should be collected from paddy fields and		
3.	Which pathogen causes Tikka disease of groundnut?					
	(a) Cercospora personata		(b) Pyricularia oryzae			
	(c) Xanthomonas citri	(d) Tungro viru	ıs		
	Explanation					
	Tikka disease of groundnut belongs to class Deuteromy	· ·	Disease incited	by a fungus Cercospora personata. The fungus		
4.	and other relate	d organizat	ions in our co	untry are trying to increase food production		
	(a) ICAR (b) Is	SR (c) ISI	(d) Agricultural marketing		
	Explanation					

5.

6.

7.

8.

9.

Efforts are being made by ICAR – Indian Council of Agricultural Research and other related organizations in our country to increase food production.					
One of the important strains distributed to the cultivation is					
(a) Oryza sativa Co. 15 (b) Ta	(a) Oryza sativa Co. 15 (b) Triticale (c) Plaseolus (d) Triticum				
Explanation					
A single species is a group of asse strains, etc. The strains are tested multiplied and distributed as a varie	d in various cl	imatic conditions, suc	ccessful ones are named,		
The improvement in the genetic ma	ke up of plants	is			
(a) Plant breeding	(b) Genetic e	ngineering			
(c) Protoplasmic fusion	(d) All the ab	oove			
Explanation					
By introducing specialized technologies, they multiply and supply them to called plant breeding.			•		
Auto and allopolyploid breeding ca	n be improved	by			
(a) Protoplasmic fusion	(b) Genetic e	ngineering			
(c) Plant breeding	(d) Cross pol	lination			
Explanation					
	By employing certain plant breeding techniques, new varieties are developed. eg. maize, sorghum, cotton and sunflower. Auto and Allopolyploid breeding are also improved.				
Fortified rice – iron rich rice and	can be i	mproved by genetic en	ngineering.		
(a) Wheat	(b) Carotene	rich carrot			
(c) Carotene rich rice	(d) All the ab	oove			
Explanation					
Improvement of nutritional quality carotene rich rice).	by genetic en	gineering (eg. Fortifie	d rice - iron rich rice and		
is a wild variety of rice.					

Learning Leads To Ruling

Page 3 of 28

	(a) Fortified rice	(b)) Carotene rich rice	
	(c) Salinity tolerant	rice (d) Iron – rich rice	
	Explanation			
		shortage of fresh	· ·	be cloned in a rice variety. In such cultivated using seawater and can
10.	is a m	ethod of eliminating	ng undesirable ones.	
	(a) Selection Explanation	(b) Heterosis	(c) Clonal selection	(d) Polyploidy
		-	res in which individual planting undesirable ones.	ants or group of plants are sorted
11.	A hybrid produced fr	om fusion of proto	plasts of two different spe	ecies is
	(a) Heterosis	(b) Somatic hybridization	
	(c) Polypoid breeding	g (d) germinal hybridization	
	Explanation			
	A hybrid produced hybridization.	from fusion of	protoplasts of two diffe	erent species is called somatic
12.	is th characters.	e method in which	plants are selected based	on their desirable morphological
	(a) Pureline selection	(b) Mass selection	
	(c) Hybridization	(d) Somatic hybridization	
	Explanation			
		-	elected based on their de or mixed and the progen	esirable morphological characters ies are grown in masses.
13.	In mass selection met	hod the progenies	are grown in	
	(a) Single	(b) Double	(c) Masses	(d) Colonies
	Explanation			
	-		d on their desirable morp	hological characters (phenotype).

General Science		Prepared By www.winmeen.com
14.	is a collection of p single homozygous individual.	plants obtained as a result of repeated self – pollination from a
	(a) Pure line selection	(b) Mass selection
	(c) Gene manipulation	(d) Cross pollination
	Explanation	
	-	s obtained as a result of repeated self-pollination from a single variety formed by this method shows more homozygosity with
15.	New genotypes are never created by	method.
	(a) Mass selection	(b) Pureline selection
	(c) Both (a) and (b)	(d) None of the above
	Explanation	
		types are never created by this method. Genetic variability is environmental and seasonal conditions.
16.	In clonal selection, selected plants a	re multiplied through to give rise to a clone.
	(a) Asexual reproduction	(b) Sexual reproduction
	(c) Conjugation	(d) Vegetative propagation
	Explanation	
	-	are multiplied through vegetative propagation to give rise to a ains unchanged for a long period of time.
17.	The genotype of a clone remains un	changed for a
	(a) Short time (b) Long period of t	cime (c) Year (d) Very short period of time
	Explanation	
	In clonal selection, the genotype of	a clone remains unchanged for a long period of time.
18.	New varieties of mung crops were called	developed by selecting variant plant by subjecting to crosses
	(a) Inter specific crosses	(b) Intra specific cross

(c) Inter or intra specific crosses (d) Hybrid crosses

	From amongst the introduced mung crop, a plant suddenly produced large and bright coloured seeds. This aspect may be due to sudden mutation. This variant plant was selected and further subjected to inter or intra specific crosses with our native crop.					
19.	are the products of first generation obtained by crossing genetically unrelated plants					
	(a) Homozygous individuals (b) Pure breeding variety					
	(c) Hybrids (d) heterozygous individuals					
	Explanation					
	Heterozygous individuals are the products of first generation obtained by crossing genetically unrelated plants.					
20.	When two individuals of the same species are crossed, it is called					
	(a) Inter breeding (b) Intra breeding (c) Out breeding (d) In breeding					
	Explanation					
	When two individuals of the same species are crossed, it is called inbreeding or selfing or self-pollination.					
21.	results in this increase of homozygosity.					
	(a) Cross pollination (b) Emasculation (c) Inbreeding (d) Heterosis					
	Explanation					
	When two individuals of the same species are crossed, it is called inbreeding or selfing or self- pollination. This results in the increase of homozygosity. Particularly homozygous recessive alleles develop loss of vigor in plants.					
22.	alleles develop loss of vigour in plants.					
	(a) Homozygous dominant alleles (b) Homozygous recessive alleles					
	(c) Heterozygous dominant alleles (d) heterozygous recessive alleles					
	Explanation					
	Particularly homozygous recessive alleles develop loss of vigor in plants. By careful observation of morphological features, we can remove these deleterious and harmful alleles by selection.					
23.	crops are asexually propagated produce very poor seeds.					

	(a) Sugarcane, potato	(b) Mung and Triticum				
	(c) Mung and Tea	(d) Rice and Wheat				
	Explanation					
	Crops like sugarcane, potato, tea, and produce very poor seeds.	banana and certain spec	ies of grasses are asexually propagated			
24.	In heterosis the increase in yield of	F1 hybrids of maize sho	ows			
	(a) 35% (b) 30%	(c) 25%	(d) 20%			
	Explanation					
	F1 hybrids of maize show 25% inc	rease in yield when comp	pared to their own parent crop.			
25.	The protoplasts of the cell are obtain	ined through dissolution	of their cell wall by enzyme.			
	(a) Cellulase and zymase	(b) Pectinase and zymase				
	(c) Carboxylase and zymase	(d) Cellulase and peo	etinase			
	Explanation					
	1	are obtained through of	o different species is called somatic dissolution of their cell walls by the			
26.	Fusion of protoplasts from two d	ifferent varieties can be	e enhanced by the chemical substance			
	(a) Poly ethylene glycol	(b) Poly vinyl chloride	e			
	(c)Phenoxy acetic acid	(d) Gibberellin				
	Explanation					
			nhanced by treatment with the chemical voltage electric current on a suitable			
27.	The superiority of F ₁ hybrid in perf	formance over its parents	s is called			
	(a) Heterosis (b) Hybrid v	igour (c) Polyploid	(d) Both a and b			
	Explanation					

Learning Leads To Ruling

Page 7 of 28

	•	e F1 hybrid in perform ease in growth, yield, 1	•	s called heterosis or hybrid vigour. pests and drought.			
28.	The organism in which number of sets of chromosome is doubled is						
	(a) Haploid	(b) Diploid	(c) Triploid	(d) Polyploidy			
	Explanation						
	• •	two sets of chromoso led is called a polyploi	• •	n in which the number of sets of			
29.	The condition in wh	nich increase in vigoui	and fruit size, root s	seize, leaves size have resulted is			
	(a) Monoploid	(b) Diploid	(c) Triploid	(d) Tetraploid			
	Explanation						
	the increase in vigo	-	e root size, large leav	ts, apples and pear has resulted in es, flower, more seeds and sugar are autopolyploids.			
30.	Seedless apple, tomato and water melon are produced by						
	(a) Aneuploidy	(b) Polyploidy	(c) Triploidy	(d) Autopolyploidy			
	Explanation						
	Seedless tomato, app	ole, watermelon and or	ange are autopolyploid	ds.			
31.	In polyploidy	is used to double t	he chromosome numb	er.			
	(a) Auxin	(b) Gibberellin	(c) Ethylene	(d) Colchicine			
	Explanation						
	Polyploidy can be in	duced by the use of co	lchicine to double the	chromosome number.			
32.	Triticum x Secale gi	ves Triticale is an exan	nple of				
	(a) Triploid	(b) Allopolyploidy	(c) Auto tetraploidy	(d) All the above			
	Explanation						
		produced by multiplica s. eg. Triticum × Secale		sets that are initially derived from			
33.	Haploid plants can b	e modified to diploid b	by doubling their chron	mosomes through			

(a) Anther and ovary culture

	(c) Mutation	(d) Hybridization			
	Explanation				
	-	have only one set of chromosome. Through the technique of d plants can be modified to diploid ones by doubling their			
32.	Varieties of short duration sugarcan	es are produced by			
	(a) Tetraploidy (b) Triploidy	(c) Polyploidy (d) Diploidy			
	Explanation				
	_	rough plant tissue culture are called somoclonal variation. eg. tant wheat. Varieties of short duration sugarcanes are produced			
33.	These are the products of induced m	utation			
	(a) Tetraploid cabbages and apples	(b) Tetraploid corn and pear			
	(c) Atomita 2-rice and groundnuts	(d) Triploid apples pear			
	Explanation				
	Atomita 2-rice with saline tolerance and pest resistance, groundnuts with thick shells are products of breeding methods through induced mutation.				
34.	Caesium, ethyl methane sulphoonate and nitro methyl urea are the				
	(a) Physical mutagens	(b) Chemical mutagens			
	(c) Biological mutation	(d) Radioactive isotopes			
	Explanation				
		lop new variety of crops. Now with newer and more powerful re, X- ray, Alpha, Beta, Gamma waves) and many chemicals ane sulfonate, nitromethyl urea)			
35.	Disease free plants are obtained by t	he culture called			
	(a) Apical meristem	(b) intercalary meristem			
	(c) Shoot apical meristem	(d) Root epical meristem			

(b) Polyploid

Disease free plants are obtained by shoot apical meristem culture technique. Plants raised through tissue culture are free from pathogens, which are widely cultivated.

36. The best way to transfer the trait to other useful crop is _____

- (a) Test cross
- (b) Di-hybrid cross
- (c) Back cross
- (d) Monohybrid cross

Explanation

Whenever, a trait that shows disease resistance in a plant is observed, the best way to transfer that trait to other useful crop is by the method of backcross.

- 37. Parent crop with repeated back crosses is known as _____
 - (a) Homozygous parent
- (b) Heterozygous parent
- (c) Recurrent parent
- (d) Pure breeding parent

Explanation

Repeated back crosses are attempted with the parent crop with more desirable characters and such a crop is known as recurrent parent.

- 38. _____ is a widely employed as a tool in modern crop improvements.
 - (a) Protoplasmic fusion
- (b) Tissue culture
- (c) Genetic engineering
- (d) Hybridization

Explanation

Genetic engineering will enable the plant or animal breeder to select the particular gene from one plant and then place the same gene into another plant for it to express its desired character. Today, genetic engineering is widely employed as a tool in modern crop improvements.

39. _____ is a vector in genetic engineering.

- (a) Bacterial plasmid and bacteria
- (b) Bacteriophage and plasmid

(c) Virus and bacteria

(d) Bacterial plasmid and Virus

Explanation

The foreign genes are generally incorporated into a host organism either through a bacterial plasmid or a virus, which acts as vectors (vehicular traffic).

40. Addition of genes or DNA from one plant or a microbe to another plant is called ______

Prepared By www.winmeen.com

	(a) Transfusion	(b) Transduction	(c) Transgenic plan	t (d) Addition
	Explanation			
	Addition of genes of transgenic plant.	r DNA (foreign genes	s) from one plant or a r	microbe to another plant is called
41.	is a re	cently formed transge	nic higher plant using g	genetic engineering.
	(a) Nicotiana, banan	a (b) E	Banana, apple	
	(c) Nicotiana and p	otato (d) T	Tobacco and mango	
	Explanation			
	protection against vi	ral infection are few of		, improved protein quality and armed transgenic higher plants by apple.
42.	Inorder to release a r	new created variety it	takes nearly	
	(a) 10 years	(b) 12 years	(c) 14years	(d) 8years
	Explanation			
	In order to release a naming and multiplie		it takes nearly 12 year	rs involving extensive field trials,
43.	To maintain soil fert	ility and soil improve	ment have be	een developed.
	(a) Herbicide	(b) Pesticide	(c) Insecticide	(d) Bio fertilizer
	Explanation			
	To maintain soil fert have been developed	•	ement, fertilizers of bio	logical origin called biofertilizers
44.	is a cyano	bacteria.		
	(a) Anabaena	(b) Caulerpa	(c) Rhodophyta	(d) Phaeophyta
	Explanation			
		n of rice and other , Nostoc, Oscillatoria,	•	obacteria (Anabaena, Calothrix,
45.	Artificial inoculation	n of rice and other cro	p fields are enriched wi	th
	(a) Fertilizer	(b) Fungicide	(c) Pesticide	(d) Cyano bacteria
Learn	ing Leads To Ruling			Page 10 of 28

Artificial inoculation of rice and other crop fields with cyanobacteria (Anabaena, Calothrix, Gleocapsa, Lyngbya, Nostoc, Oscillatoria, Scytonema) has attracted much attention to increase fertility in several countries.

			0 111		
46.	The term	hin	tortilizor	danotes	
4 0.	THE LETTI	טוט	ICILIIIZCI	achores	

(a) All the nutrients

- (b) All the inorganic chemicals
- (c) Nutrients of biological origin
- (d) Organic chemicals

Explanation

The term 'biofertilizer' denotes all the nutrient inputs of biological origin for plant growth. Biological origin refers to microbes producing nitrogen compounds. Bacteria and cyanobacteria are known to fix atmospheric nitrogen and are known as biofertilizers.

- 47. These are nitrogen fixing bacteria
 - (a) Azetobacter and E. Coli
- (b) Sargassum and Spirogyra
- (c) Oedogenium and yeast
- (d) Azetobacter and Rhizobium

Explanation

Nitrogen fixing bacteria like Azotobacter, Bacillus and Rhizobium increased the crop yield to 20%. Pseudomonas striata are used as seed inoculants as biofertilizer coats for cereals.

- 48. ______ is an aquatic fern.
 - (a) Marsclia
- (b) Riciia
- (c) Selaginella
- (d) Azolla

Explanation

Azolla is an aquatic fern, which contains an endophytic cyanobacterium Anabaena azollae in its leaves.

- 49. _____ is widely employed as a successful bio fertilizer in Indian rice fields.
 - (a) Indigofera linifolia
- (b) Acacia nilotica

(c) Lathyrus

(d) Azolla pinnata

Explanation

A. pinnata is widely employed as a successful biofertilizer in Indian rice fields. It adds 30 Kg of nitrogen per hectare where the yield is equivalent to that of urea or ammonium phosphate.

Gene	ral Science		Prepared By <u>www.winmeen.com</u>
50.	Mycorrhiza is a		
	(a) Algae	(b) Bryophyte wit	h the roots of higher plants
	(c) Root inhabiting fungus	(d) All the above	
	Explanation		
	•	•	inside the roots of many plants. It increases ots against edaphic (soil) stresses, pathogen
51.	Mycorrhiza provides protection	to the roots against the	stresses of the soil called
	(a) Red (b) Black	(c) Edaphic	(d) Saline
	Explanation		
	growth and yield and also provide and pests. It helps in the increase	des protection to the rood uptake of soil and min	inside the roots of many plants. It increases ots against edaphic (soil) stresses, pathogen neral water solution by the plant root system. Sicular Arbuscular Mycorrhiza) fungi.
52.	is an ectotrophic m	ycorrhiza.	
	(a) VAM	(b) Mycorrhiza wi	ith pinus plant
	(c) Basidiomycetous fungi	(d) Agaricus	
	Explanation		
		rophic mycorrhiza, w	side the surface of roots of plants. eg. hich are found inside the roots, in the ntercellular) eg. VAM fungi.
53.	Rhizobium adds about	of nitrogen to soil.	
	(a) 50 kg (b) 80kg	(c) 50 to 1	50 kg (d) 200kg
	Explanation		
	Symbiotic nitrogen fixing Rhizo hectare. Azatobacter and Azospi		It adds 50 to 150 Kg of nitrogen to soil per ics which act as biopesticides.
54.	The surface area of the roots of l	nost plants is increased	by
	(a) Cyanobacteria (b) Azolla	(c) Mycorrhiza	(d) Ectotrophic mycorrhiza
Lear	Explanation ning Leads To Ruling		Page 12 of 28

55.

56.

57.

58.

Ectotrophic mycorrhiza, which acts as a biofertilizer, increases the surface area of the roots of host plants, so that more absorption of nutrients by the roots is made possible.							
An example for green	manure is	_					
(a) Nitrosomonas	(b) Mycorrhiza	(c) Rhizobium	(d) Sesbania				
Explanation							
_	Various leguminous plants like Crotalaria juncea, Cassia mimusoides, Glycine max, Indigofera linifolia, Sesbania rostrata, Acacia nilotica, Leucena, Lathyrus and Mucuna are used as green manures.						
The cyanobacteria use	ed for artificial inocu	lation of rice is	_				
(a) E. Coli	(b) Bacillus	(c) Nostoc	(d) Pseudomonas				
Explanation							
Artificial inoculation of rice and other crop fields with cyanobacteria (Anabaena, Calothrix, Gleocapsa, Lyngbya, Nostoc, Oscillatoria, Scytonema) has attracted much attention to increase fertility in several countries.							
Atomic 2-rice with sa	line tolerance and pe	est resistance is a produ	uct obtained through				
(a) Induced mutatio	n (b) P	Protoplasmic fusion					
(c) Inbreeding	(d) C	Genetic engineering					
Explanation							
Atomita 2-rice with saline tolerance and pest resistance, groundnuts with thick shells are products of breeding methods through induced mutation.							
2. Crop Diseases And Their Control							

Explanation

(a) Edaphic condition

(c) Meterological condition

The diseases in crop plants result in a heavy loss of crop yields and cause considerable damage to crops year after year. To check the plant diseases, it becomes necessary to know about the cause of the diseases, of the life history of the causal organism and of the meterological conditions which influence the host and parasite interaction.

(b) Prophylaxis

(d) Pathogens

_ influence the host and parasite interaction.

59.	is the protection of the host from exposure to the pathogen infection and environmental					
	factors.		F	F	8	
	(a) Prophylaxis	(b) Fertilizer	(c) Edaphic fa	actors	(d) Soil fertility	
	Explanation					
	Prophylaxis includes from environmental f	•	-		the pathogen, from infection or	
60.	Oryza sativa is the botanical name of					
	(a) Rice	(b) Wheat	(c) Pea	(d) Gro	ound nut	
	Explanation					
	Pathogen Name of the disease Systematic position	Rice - Oryza sative Disease incited by a Blast disease of rice. The fungus belongs to	fungus, <i>Pyriculari</i>			
61.	Blast disease of rice i	s caused by				
	(a) Helminthosporium	m (b) N	Aicrosporium			
	(c) Peziza	(d) I	Pyricularia oryza	ae		
	Explanation					
	Pathogen Name of the diseas Systematic position	e Blast disease of	by a fungus, <i>Pyri</i> rice.			
62.	The symptom that a	are found in the Rac	chis leaf blades	and lea	of sheaths in the disease called	
	(a) Tikka	(b) Blast	(c) Canker		(d) Tungro	
	Explanation					
		• •			heaths and rachis. Characteristic earance are formed on the leaf –	
63.	Pyricularia oryzae be	longs to class	-			

	(a) Myxomycetes	(b) Ascomycete	es (c) Basidiomycetes	(d) Deuteromycetes
	Explanation			
	•	•	young possesses hyaline and ive brown. Conidia are prod	septate mycelium. On maturity, uced terminally.
64.	Blast disease of oryz	ae shows	shaped grey recrotic le	sion in the centre of the leaf.
	(a) Cup	(b) Spindle	(c) Disc	(d) Spherical
	Explanation			
			s spindle shaped grey in the cres ultimately dry up.	centre and remain surrounded by
65.	Each conidium of Py	ricularia oryzae	is	
	(a) Obpyriform sep	tate	(b) A septate	
	(c) Big appendage pr	resent	(d) Fusiform septate	
	Explanation			
	Conidia are produc appendage.	ed terminally.	Each conidium is obpyrifo	orm septate with a small basal
66.	Immersion of seeds i	in 0.2% solution	of for 24 hours controll	ed the blast disease of rice.
	(a) Agrosan GN	(b) Kalimat B	(c) Cerasan	(d) Spergon
	Explanation			
		of seedlings. The	ne seed protectants such as ag	hours controlled the disease and grosan, cerasan and spergon have
67.	Removal and destroy	ying plan	ts from paddy fields control	the blast disease of rice.
	(a) Triticum seral		(b) Oryzae sativa	
	(c) Digitaria margin	nate	(d) Arachis hypogeal	
	Explanation			
			nd destroyed. The secondary addy fields and destroyed.	y host plants such as Digitaria
68.	The dusting of	compounds ha	as been suggested for control	ling blast disease of rice
Learn	ing Leads To Ruling			Page 15 of 28

	(a) Copper sulphate	(b) Organon	nercuric	(c) Quickline	(d) Boredeaux
	Explanation				
	The dusting of organo	omercuric con	npounds	has been sugge	ested for controlling blast.
69.	Bordeaux mixture is	used as a			
	(a) An insecticide	(b) Pesticide		(c) Fungicide	e (d) Herbicide
	Explanation				
	Spraying and dusting	7			
	Blast disease can Bordeaux mixture at l Bordeaux mixture for	least 4 times bef	fore and a		
	Copper sulphate Quick lime Water		9 Kgs. 9 Kgs. 250 litres		
	The dusting of o controlling blast.	rganomercuric	compoun	ds has been sugg	gested for
70.	Tungro disease of rice	e is caused by			
	(a) Bacterium	(b) Virus		(c) Fungus	(d) Nematode
	Explanation				
	Tungro disease of rice	e			
	Pathogen Disease i	ncited by a vir	rus Rice	Tungro virus.	The virus is transmitted by a leafhopper.
71.	Cercospora personata	causes			
	(a) Tikka disease of	groundnut		(b) Citrus can	ker
	(c) Blast disease of ri	ce		(d) Tungro dis	sease of rice
	Explanation				
	Gr	oundnut or p	eanut -	Arachis hypogo	ea
	Tikka disease of p Pathogen Systematic position	Disease in			ospora personata. eromycetes.
72.	Antibiotic streptocyli	ne is used to c	ontrol of	f	
	(a) Tikka disease of g	groundnut		(b) Citrus can	nker

(c) Blast disease of rice

(d) Tungro disease of rice

Explanation

The citrus canker infection can be largely prevented by removing the infected branches and spraying the plants with Bordeaux mixture or spraying 3 to 4 times in a season with antibiotic the streptocycline at the rate of 1 gm in 45 liters of water.

73. Citrus canker is caused by _____

(a) Cercospora personata

(b) Digitaria marginata

(c) Xanthomonas citrii

(d) Acacia nilotica

Explanation

Citrus canker disease due to a bacterium Xanthomonas citri. This bacterium is of bacillus and gram negative type. In India, this is the most commonly prevalent disease during the rains.

3. Genetically Modified Food

74. Agrobacterium tumefaciens causes _____

(a) Crown gall disease

(b) Tungro disease

(c) Tikka disease

(d) Blight disease

Explanation

Agrobacterium tumefaciens is a soil inhabiting bacterium and has Ti (tumor inducing) plasmid. This bacterium invades crops such as tomato, sunflower, brinjal and cotton and causes crown gall disease which is in the form of tumerous growth.

75. Tomatoes with elevated sucrose and reduced starch could be produced by _____ gene.

(a) Cartone gene

(b) Nif gene

(c) Sucrose phosphate synthase gene

(d) Glucose gene

Explanation

Tomatoes with elevated sucrose and reduced starch could also be produced using sucrose phosphate synthase gene.

76. Acute watery disarrhoea is caused by _____

(a) E.coli and Bascillus

(b) Escherichia coli and vibriochloreae

(c) Bacillus and Azetobacter

(d) Mycobacterium tuberculosis

Acute watery diarrhoea is caused by Escherichia coli and Vibrio cholerae that colonize the small intestine and produce enterotoxin.

- 77. By the applications of gene manipulation technique rice crops with _____ and ____ with pulse seeds are produced.
 - (a) Vitamin A, sugar
- (b) Vitamin A, Vitamin D
- (c) Vitamin A, lysine
- (d) Vitamin A with Glycine

Explanation

Today, rice crops have been enriched with vitamin A through gene manipulation. Similarly, pulse crop have been tampered with to produce lysine-rich pulse seeds. Such genetically modified food (GMF) are now becoming components of human staple food.

- 78. During World War II paper bags filled with ______ were employed as biological weapons.
 - (a) Rats
- (b) Cockroaches
- (c) Plague infested fleas
- (d) Rabies virus

Explanation

During World war II, papar bags filled with plague infested fleas were employed as biological weapons to kill thousands of people.

- 79. Lethal agents produced by GMO is _____
 - (a) Anthrox
- (b) Cholera
- (c) Malaria
- (d) Dysentery

Explanation

Some of the most lethal agents known to have been tested in biological warfare are anthrax, plague, smallpox and Ebola viruses with viral diseases.

- 80. Exploitation and utilization of bio resources from a country by several organisations is known as
 - (a) Bio war

(b) Biological warfare

(c) Bio – fertilizer

(d) Bio - piracy

Explanation

	The clandestine exploitation and utilisation of bioresources from a country by several organisations and multinational companies without proper authorisation is known as Biopiracy.								
81.	plants possess anticancerous properties								
	(a) Vinca rosea		(b) Tapioca	ı					
	(c) Phyllanthus en	nblica	(d) Carthar	nius tinctorius					
	Explanation								
92	they possess anti- biomolecules pres- used for commerc	cancerous properties ent in the plant. The ial activities.	es. The correse compou	mpanies of the	countries as medicinal plants since e rich nations are interested in the by living organisms are patented and				
82.	•	n produced by Penta	•						
	(a) Carotene	(b) Cytochrom	e (c)	Flavoprotein	(d) Brazzein				
	Explanation								
	•	*			uces a protein called brazzein. It is w-calorie sweetener.				
			6. Bio – Pa	atent					
83.	and _	are the tw	o unique fa	acets of Bio – p	patency				
	(a) ISR and IPP	(b) ISR	O and IPP						
	(c) IPR and IPP	(d) Nor	ne of these						
	Explanation								
	facets of any Bio-	patency. Intellectua	l property i	ncludes 'paten	ty Rights (IPR) are the two unique ts', 'trade secrets', 'copy rights' and hrough one's own knowledge and				
84.	Plant breeding is t	the applied branch of	of	-					
	(a) Genetics	(b) Physiology	(c)	Anatomy	(d) Embryology				
	Explanation								

Another example of Intellectual property is the new crop varieties, which are protected through 'Plant Breeder's Rights' or PBR's. The plant breeder who developed this new variety enjoys the exclusive right for marketing the variety.

- 85. The Indian patent Act of 1970 allows process patents, but no
 - (a) Food

- (b) Minerals
- (c) Products patent of food
- (d) Oil food

Explanation

The Indian Patent Act of 1970 allows process patents, but no product patents for foods, chemicals drugs and pharmaceuticals. Duration of patent in India is 5 years.

- 86. _____ is an oil eating bacteria.
 - (a) Pseudomonas
- (b) Bacillus
- (c) Vibrio
- (d) Cossus

Explanation

In 1980, the discovery of an oil eating bacterium (Pseudomonas) by a non-resident Indian Scientist (Dr. Chakrabarty) was patented in USA by a multinational Corporation. Similarly, an 'oncomouse' was also patented. All this means that life forms could be patented.

7. Sustained Agriculture

- 87. Leaves of ______ is a substitute of tea.
 - (a) Ilex paraguriensi
- (b) Camelli chinensis

(c) Coffea indica

(d) Coffea Arabica

Explanation

Leaves of Ilex paraguriensis, which can be a substitute for tea and powdered seeds of Cola nitida instead of coffee.

- 88. Avoidance of man made complex substance are known as _____
 - (a) Bio fertilizer
- (b) Bio informatics (c) Bio patent
- (d) Xenobiotics

Explanation

Sustainable agriculture includes scientific methods of farming that utilise renewable resources, increase in yield, avoidance of manmade complex substances known as Xenobiotics which are used as insecticides and pesticides that cause pollution to soil and environment.

89. Transfer of ______ to non – leguminous crops will improve higher yield.

Learning Leads To Ruling

Page 21 of 28

	(a) Nif genes	(b) Sucrose polymerase						
	(c) Sucrose phosphate gene	(d) All the above						
	Explanation							
	Transfer of nif (nitrogen fixing	Transfer of nif (nitrogen fixing) gene to non- leguminous crops will improve higher yield.						
90.	is defined as prand growth regulators.	roduction systems which avoids the use of organic fertilizer, pesticides						
	(a) Crop rotaion	(b) Bio – war						
	(c) Organic farming	(d) Bio patent						
	Explanation							
	Organic farming is defined pesticides, growth regulators	as production systems which avoids the use of synthetic fertilizers, and livestock feed additives.						
91.	91. Fungus Pyricularia oryzae belongs to the class							
	(a) Basidiomycetes	(b) Schizomycetes						
	(c) Deuteromycetes	(d) Ascomycetes						
	Explanation							
	The fungus belongs to class l	Deuteromycetes.						
	8. Medicinal Plan	nts Including Microbes, 9. Economic Importance						
92.	Acalyphine is extracted from							
	(a) Acalypha indica	(b) Aegle marmelos						
	(c) Cissus quafrangularis	(d) Mimosa pudica						
	Explanation							
		bounds like Acalyphine and Triacetoneamine are extracted from tain cyanogenic glucoside and alkaloids.						
93.	The medicinally valuable con	mpounds obtained from medicinal plants are called						
	(a) Biomedicines (b) Bio	o – war (c) Bio – fertilizer (d) Bio – pesticides						
	Explanation							
	Medicinally valuable compo	unds obtained from the medicinal plants are called "biomedicines".						

(b) Rheumatoid arthritis and scabies

(d) Sprain

(a) Joint pain

(c) Muscle pain

Page 23 of 28

Explanation

Learning Leads To Ruling

	Fresh juice of acalypha leaves mixed with oil and salt is used for Rheumatoid arthritis and to cure scabies. Powdered leaves are used to cure bedsores and infected wounds.								
100.	contains cyanogenic glycoside and alkaloids.								
	(a) Triacetoneamin	e	(b) Marmelo	sin and commar	in				
	(c) Steroids and Tite	rpendoids	(d) Mimosin	a and alkaloids					
	Explanation								
	The active medicinal They contain cyanog	-	• -	nd Triacetonear	nine are extracted f	from this plant.			
101.	Mimosa pudica belo	ngs to the famil	у						
	(a) Mimosaceae	(b) Fabaceae	(c) A	steraceae	(d) Euphorbiacea	ne			
	Explanation	Explanation							
	Mimosa pudica belongs to Mimosaceae. The vernacular name of M. pudica in tamil is 'Thottal chinungi or Thottal surungi'. Its common english name is Touch-Me-Not plant.								
102.	Mimosa is used for o	curing piles, wo	unds and						
	(a) Tuberculosis	(b) Tetanus	(c) Whoopin	ng cough	(d) Measles				
	Explanation								
	A decoction of the rois also useful for cur		-			pea. This plant			
103.	The alkaloid extracte	ed from Mimosa	is						
	(a) Ephedrine	(b) Hadjor	(c) C	oumarin	(d) Mimosine				
	Explanation								
	A decoction of the ro is also useful for cur extracted from this p	ring piles, minor	•			•			
104.	Solanum nigrum bel	ongs to the fam	ily						
	(a) Solanaceae	(b) M	moseae	(c) Asteraceae	e (d) Musa	ceae			
Explanation									

	Solanum nigrum It manithakkali or man	•	ae. The vernacular	name of S. nigrum in tamil is				
105.	Solanum nigrum is commonly called							
	(a) Touch me not	(b) Black night shad	de (c) Pirandi	(d) Hadjor				
	Explanation							
	_	belongs to Solanacea athakkali. Its trade na		name of S. nigrum in tamil is				
106.	Fruits of Solanum ni	grum are globose, blac	k coloured					
	(a) Berry	(b) Drupe	(c) Capsule	(d) Aggregate fruit				
	Explanation							
	In solanum nigrum, Leaves are ovate without hairs. Flowers white borne on extra axillary cymes. Fruits are globose and black coloured berry.							
107.	Solanum nigrum her	b is effective in the trea	atment of	_ disorders.				
	(a) Stomach	(b) Heart	(c) Lungs	(d) Liver				
	Explanation							
		um nigrum herb is effe o cures fever, dysentery		of liver disorders like cirrhosis of on.				
108.	Solanin and	Solanin and are extracted from theplant Solanum nigrum						
	(a) Mimosine	(b) Adephine	(c) Resin	(d) Saponin				
	Explanation							
	Active medicinal compounds like solanin and saponin are extracted from this plant.							
109.	Penicillin is extracted from							
	(a) Penicillium expo	nsum	(b) Penicillium chrysogenum					
	(c) Penicillium nota	tum	(d) Penicillium grise	ns				
	Explanation							
	Penicillin is a well known antibiotic obtained from the blue green mold called Penicillium notatum. When it is grown in culture medium, the mycelium excretes an antibiotic substance called penicillin.							

(a) Nail enamel

(b) Lip-Stick

(c) Tooth paste (d) Leather Industry

Learning Leads To Ruling

Page 26 of 28

	Bran wax is a by-product in bran-oil extraction. It is used in chocolate industry and in th manufacture of lip-sticks.							
115.	Arachis hypogea is the binominal name of							
	(a) Pea	(b) Bengal Gram	(c) Groundnut	(d) Paddy				
	Explanation							
	Groundnut or	peanut and its binomi	al name is Arachis hy	ypogea				
116.	Oil cake made	e from ground nut is for	ed to					
	(a) Fowls	(b) Livestock	(c) Dogs	(d) Cats				
	Explanation							
	medium. Veg	•	outter) is also prepare	ed from the seeds and used as fine cooking ed from this oil. The oil cake is fed to the	_			
117.	Groundnut oil is used as illuminant and							
	(a) Sedative	(b) Purgative	(c) Lubricant	(d) Non-Lubricant				
	Explanation							
	Oil is used as illuminant, lubricant. Groundnut shell is used in the manufacture of activated carbon. The groundnut cake is a good cattle feed. The plant after removing the pod, both dried and fresh is a good cattle feed.							
118.	Gossypiun barbadense belongs to the family							
	(a) Malvacea	e (b) Euphorbi	aceae (c) I	Lilliaceae (d) Fabaceae				
	Explanation							
	Many members of Malvaceae yield fibres. Gossypium barbadense (Egyptian cotton) and G. hirsutum are some examples for fibre plants. The seed coat of cotton seeds produce fibres on their external surface. So, it is called as surface fibre.							
119.	Fatty acid obt	tained from oil is used	in the preparation of	·				
	(a) Insecticide	e (b) Lubricant	(c) Pesticide	e (d) Insecticide and fungicide)			
	Explanation							
	Fatty acids obtained from oil is used in the preparation of insecticide, fungicidies and plastics, etc.							

In India, teak is used for making furnitures, buildings, cardboards, railway sleepers, etc. Ships and bridges are also made from this timber.

124. Medicinal properties of plants mentioned even in the oldest ______ veda

(a) Rig (b) Yajur

(c) Atharvana

(d) Samna

Explanation

Medicinal properties of plants have been mentioned even in the oldest "Rig Veda".

125. The strongest pain killer obtained from opium poppy is _____

General Science

Prepared By www.winmeen.com

(d) Tuberculosis

	(a) Quinine	(b) Digoxin	(c) Morphine	(d) Ephedrine
	Explanation			
	Morphine, the strong	est pain killer obtai	ned from Opium popp	y - Papaver somniferum.
126.	"Hadjor" bone joiner	is a trade name of		
			(OR)	
	Botanical name for p	irandai is		
	(a) Aegle marmelos	(b)	Solanum nigrum	
	(c) Acalypha indica	(d)	Cissus quadrangula	ris
	Explanation			
	1 0	· ·		me of C. quadrangularis in tamil is as ommon shrub with tendrils.
127.	The chloromycetin is	used to cure		

Explanation

(a) Pneumonia

127.

Chloromycetin is obtained from the actinomycete, Streptomyces venezuelae. It kills bacillus form of bacteria and cures typhoid fever.

(b) Urinary infection

(c) Typhoid